Pyro chemical Kinetics during Welding

The ability of a flux to refine as well as protect the weld pool is related to the mass transport processes in the flux. The flux should melt approximately 200 °C (360 °F) below that of the alloy for proper flux coverage and for protection of the weld deposit. One of the most important physical properties of a flux is its slag viscosity, which not only governs the way the slag flows and covers the molten weld pool but also strongly affects the transport processes involved in pore removal, deoxidation, and retention of alloying additions. The chemical processing and refining by the flux to achieve a weld deposit with low concentrations of oxygen and sulfur and optimal concentration of hardenability agents (carbon, manganese, chromium, molybdenum, nickel, and so on) may not be achieved unless slag viscosity is also adequate. The viscosity is strongly temperature-dependent, so the use of various heat inputs during welding may require different flux compositions to produce the matching slag viscosity.

The slag must be fluid enough so that it flows and covers the molten weld pool but must be viscous enough so that it does not run away from the molten metal and flow in front of the arc, leading to possible overlapping by the weld metal. (For overhead welding, surface tension becomes a primary factor because fluidity reduces coverage). It has been reported that if the manganese silicate flux viscosity at 1450 °C (2640 °F) is above 0.7 Pa · s (7 P), a definite increase in weld surface pocking will occur. Pock marks have been associated with easily reducible oxides in the flux, which contribute oxygen to the weld pool. The weld pool reacts with carbon to form carbon monoxide, which cannot be transported through a high-viscosity flux and is trapped at the liquid-metal/flux interface. The result is a weld metal surface blemished by surface defects or pocks. Because viscosity is sensitive to temperature and thus heat input, pocking can be the evidence that a flux formulated for high-current welding is being used at too low a current or too great a travel speed. The viscosity of most welding fluxes at 1400 °C (2550 °F) is in the range of 0.2 to 0.7 Pa · s (2 to 7 P).

Slag viscosity also affects the shape of the weld deposit and must be carefully controlled when covered electrodes are used out of position. The higher the slag viscosity, the greater the weld penetration in submerged arc welding. However, this benefit must be balanced, because if the viscosity is too high, the gaseous products cannot escape the weld pool, resulting in unacceptable porosity. This condition can be monitored by observing the density of pores trapped in the underside of the detached slag. Detached slags manifesting a honeycomb structure suggest a severe weld metal porosity problem. This condition usually means that a given flux has experienced an insufficient heat input for the effective transport of gas through the slag.

SAW pock marks

SAW pock marks

Reference: ASM Handbook Volume 6

Keep Reading, happy welding

Thank you

KP Bhatt


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s